Kuritani, Takeshi et al. (2005) Assimilation and Fractional Crystallization Controlled by Transport Process of Crustal Melt: Implications from an Alkali Basalt-Dacite Suite from Rishiri Volcano, Japan, Journal of Petrology, 46, 1421-1442, doi: 10.1093/petrology/egi021. < 20150918145356-579433 > pub

Map on Earth or stone. Places and analyses are shown.

  • abstract:

    Mechanisms of fractional crystallization with simultaneous crustal assimilation (AFC) are examined for the Kutsugata and Tanetomi lavas, an alkali basalt–dacite suite erupted sequentially from Rishiri Volcano, northern Japan. The major element variations within the suite can be explained by boundary layer fractionation; that is, mixing of a magma in the main part of the magma body with a fractionated interstitial melt transported from the mushy boundary layer at the floor. Systematic variations in SiO2 correlate with variations in the Pb, Sr and Nd isotopic compositions of the lavas. The geochemical variations of the lavas are explained by a constant and relatively low ratio of assimilated mass to crystallized mass (‘r value’). In the magma chamber in which the Kutsugata and Tanetomi magmas evolved, a strong thermal gradient was present and it is suggested that the marginal part of the reservoir was completely solidified. The assimilant was transported by crack flow from the partially fused floor crust to the partially crystallized floor mush zone through fractures in the solidified margin, formed mainly by thermal stresses resulting from cooling of the solidified margin and heating of the crust. The crustal melt was then mixed with the fractionated interstitial melt in the mushy zone, and the mixed melt was further transported by compositional convection to the main magma, causing its geochemical evolution to be characteristic of AFC. The volume flux of the assimilant from the crust to the magma chamber is suggested to have decreased progressively with time (proportional to t−1/2), and was about 3 × 10−2 m/year at t = 10 years and 1 × 10−2 m/year at t = 100 years. It has been commonly considered that the heat balance between magmas and the surrounding crust controls the coupling of assimilation and fractional crystallization processes (i.e. absolute value of r). However, it is inferred from this study that the ratio of assimilated mass to crystallized mass can be controlled by the transport process of the assimilant from the crust to magma chambers.

  • doi: 10.1093/petrology/egi021
  • modified at 16 h ago


(a) Sr isotopes_procedures of Yoshikawa and Nakamura (1993) on TIMS Finnigan MAT261, MAT262 and Triton TI
(b) Nd isotopes_procedures of Nakamura et al. (1991, 2003) on TIMS Finnigan MAT261, MAT262 and Triton TI
(c) Pb isotopes_procedures of Kuritani and Nakamura (2002, 2003) on TIMS Finnigan MAT261, MAT262 and Triton TI
(d) B_procedures of Nakamura et al. (1992) on TIMS Finnigan MAT261, MAT262 and Triton TI


(a) XRF procedures of Takei (2002) on XRF PANalytical PW2400
(b) Tritration with gravimetry
(c) Q-ICP-MS_procedures of Makishima and Nakamura (1997, 1999, 2006) on ICPMS Yokogawa PMS2000
(d) TIMS with isotope dilution on TIMS Thermo-Fisher MAT261
Tixhr1599271594 thumb Km 6 < 20151109091355-408499 >pub
  • IGSN: IEDRM00C8
  • classification: igneous
  • physical-form: hand specimen
  • quantity (g): 207.57
  • description: Kutsugata Lava, South Lava
  • modified at 2020-02-13
Tixhr 101582866 thumb Km 8 < 20151109090710-045892 >pub
  • IGSN: IEDRM00C7
  • classification: igneous
  • physical-form: hand specimen
  • quantity (g): 478.88
  • description: Kutsugata Lava, South Lava
  • modified at 2020-02-13
Tixhr 1406852609 thumb Kr 72 < 20151116085911-562570 >pub
  • IGSN: IEDRM007Z
  • classification: volcanic:andesitic
  • physical-form: hand specimen
  • quantity (g): 448.49
  • description: Rishiri, Tanetomi lava, Upper lava (UL1)
  • modified at 2020-02-13
Tixhr191230872 thumb Kr 64 < 20151116084954-326486 >pub
  • IGSN: IEDRM007X
  • classification: volcanic
  • physical-form: hand specimen
  • quantity (g): 547.5
  • description: Rishiri, Tanetomi lava, Upper lava (UL1)
  • modified at 2020-02-13
Tixhr 209787684 thumb Kr 47 < 20151117090929-691480 >pub
  • IGSN: IEDRM00CB
  • classification: volcanic
  • physical-form: hand specimen
  • quantity (g): 84.31
  • description: Rishiri, Tanetomi lava, Upper lava (UL2)
  • modified at 2020-02-13
Tixhr221668133 thumb Kr 28 < 20151117090523-590854 >pub
  • IGSN: IEDRM00CA
  • classification: volcanic
  • physical-form: hand specimen
  • quantity (g): 748.34
  • description: Kutsugata Lava, South Lava
  • modified at 2020-02-13
Tixhr1650341373 thumb Kr 74 < 20151116085607-104933 >pub
  • IGSN: IEDRM007Y
  • classification: volcanic:andesitic
  • physical-form: hand specimen
  • quantity (g): 175.99
  • description: Rishiri, Tanetomi lava, Lower lava (LL1)
  • modified at 2020-02-13
Tixhr1032214287 thumb Nm 3 < 20151110092446-058565 >pub
  • IGSN: IEDRM00C9
  • classification: igneous
  • physical-form: hand specimen
  • quantity (g): 752.31
  • description: Rishiri, Tanetomi lava,Upper lava (UL2)
  • modified at 2020-02-13
Img 6152@4b53430c1c9fc7bc6d1b6c0 thumb Ta-29 < 20120517094057-036-706 >pub
  • IGSN: IEDRM00C6
  • classification: igneous
  • physical-form: hand specimen
  • status: (unknown)
  • description: This rock is collected by T. Kuritani from Tanetomi lava (Lower lava LL2, top clinker layer) in Rishiri Island, Northern Japan. Geochemical analysis were undertaken by T. Kuritani (Kuritani and Nakamura, 2006: JVGR149, p124-138), except for halogen abundances (by Qiaoyun Wang, PhD study in 2010). The sample was provided by A. Makishima to H. Kitagawa on May 18 in 2012.
  • modified at 2020-02-13
Tixhr1522928762 thumb Fm-15a < 20151125083641-768130 >pub
  • IGSN: IEDRM008B
  • classification: volcanic:basaltic
  • physical-form: hand specimen
  • quantity (g): 1012.69
  • description: Kutsugata Lava, North Lava
  • modified at 2020-02-13
Tixhr1286665639 thumb Ta-26 < 20151130084246-069488 >pub
  • IGSN: IEDRM008E
  • classification: volcanic:basaltic
  • physical-form: hand specimen
  • quantity (g): 108.49
  • description: Kutsugata Lava, North Lava
  • modified at 2020-02-13
name box-type global-id
binder of Assimilation and Fractional Crystallization Controlled by Transport Process of Crustal Melt: Implications from an Alkali Basalt-Dacite Suite from Rishiri Volcano, Japan pub container 20160212141225-640207
name device size global-id
Km 6 pub TIMS Thermo-Fisher MAT261 1 20190619150147-479533
Km 6 pub 2 20190619143340-130743
Km 6 pub XRF PANalytical PW2400 13 20190619143325-753064
Km 6 pub ICPMS Yokogawa PMS2000 27 20190619150131-692673
Km 6 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-911335
Km 6 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153615-316087
Km 6 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153626-706184
Kr 72 pub EPMA JEOL JCMA-733MKII/JXA-8900L (Tokyo) 4 20190614155144-007573
Kr 72 pub XRF Philips PW-1480 (Tokyo) 21 20190614154428-498432
Kr 72 pub TIMS Thermo-Fisher MAT261 1 20190619150147-921789
Kr 72 pub 2 20190619143340-917306
Kr 72 pub XRF PANalytical PW2400 15 20190619143326-864510
Kr 72 pub ICPMS Yokogawa PMS2000 27 20190619150132-078075
Kr 72 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-931317
Kr 72 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153616-387440
Kr 72 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153626-799007
Kr 72_2007 pub TIMS Thermo-Fisher MAT261 1 20190621092556-706143
Kr 64 pub 2 20190619143340-033826
Kr 64 pub TIMS Thermo-Fisher MAT261 1 20190619150147-479915
Kr 64 pub XRF PANalytical PW2400 13 20190619143326-827203
Kr 64 pub ICPMS Yokogawa PMS2000 27 20190619150133-629841
Kr 64 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-329768
Kr 64 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153616-299044
Kr 64 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153626-637988
Kr 64 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153637-619774
Kr 47 pub 2 20190619143340-541710
Kr 47 pub XRF PANalytical PW2400 15 20190619143326-514665
Kr 47 pub TIMS Thermo-Fisher MAT261 1 20190619150147-113433
Kr 47 pub ICPMS Yokogawa PMS2000 27 20190619150134-053634
Kr 47 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-264440
Kr 47 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153616-184778
Kr 47 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153626-477654
Kr 47_2007 pub TIMS Thermo-Fisher MAT261 1 20190621092556-981677
Nm 3 pub 2 20190619143340-108200
Nm 3 pub XRF PANalytical PW2400 13 20190619143327-498049
Nm 3 pub TIMS Thermo-Fisher MAT261 1 20190619150147-087495
Nm 3 pub ICPMS Yokogawa PMS2000 27 20190619150134-992927
Nm 3 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-365875
Nm 3 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153616-820444
Nm 3 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153626-232246
Ta-29 pub TIMS Thermo-Fisher MAT261 1 20190619150147-206414
Ta-29 pub 2 20190619143340-254243
Ta-29 pub XRF PANalytical PW2400 13 20190619143325-170385
Ta-29 pub ICPMS Yokogawa PMS2000 27 20190619150131-710202
Ta-29 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-293703
Ta-29 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153615-111664
Ta-29 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153626-709571
Ta-29_2006 pub 2 20190620142443-307431
Ta-29_2006 pub XRF PANalytical PW2400 13 20190620142430-702260
Ta-29_2006 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190620143558-931008
Ta-29_2006 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190620143546-427799
Ta-29_2006 pub ICPMS Yokogawa PMS2000 28 20190620144432-074128
Km 8 pub TIMS Thermo-Fisher MAT261 1 20190619150147-569642
Km 8 pub 2 20190619143339-835048
Km 8 pub XRF PANalytical PW2400 13 20190619143324-655584
Km 8 pub ICPMS Yokogawa PMS2000 27 20190619150130-815800
Km 8 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-006679
Km 8 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153615-742957
Km 8 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153625-257573
Fm-15a pub EPMA JEOL JCMA-733MKII/JXA-8900L (Tokyo) 4 20190614132239-012557
Fm-15a pub XRF Philips PW-1480 (Tokyo) 21 20190614135256-793172
Fm-15a pub 2 20190619143339-746961
Fm-15a pub ICPMS Yokogawa PMS2000 27 20190619150128-801019
Fm-15a pub XRF PANalytical PW2400 13 20190619143323-065742
Fm-15a pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-106831
Fm-15a pub TIMS Thermo-Fisher MAT261 1 20190619150147-908533
Fm-15a pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153615-768067
Fm-15a pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153625-277921
Ta-26 pub XRF Philips PW-1480 (Tokyo) 21 20190613153949-950172
Ta-26 pub EPMA JEOL JCMA-733MKII/JXA-8900L (Tokyo) 4 20190613154312-512410
Ta-26 pub TIMS Thermo-Fisher MAT261 1 20190619150147-858021
Ta-26 pub 2 20190619143339-732533
Ta-26_1 pub EPMA JEOL JCMA-733MKII/JXA-8900L (Tokyo) 4 20190617155225-624711
Ta-26 pub ICPMS Yokogawa PMS2000 27 20190619150129-468792
Ta-26 pub XRF PANalytical PW2400 13 20190619143323-498968
Ta-26 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-549380
Ta-26 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153615-174801
Ta-26 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153637-963889
Ta-26 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153625-089290
Kr 28 pub TIMS Thermo-Fisher MAT261 1 20190619150147-072445
Kr 28 pub 2 20190619143339-016714
Kr 28 pub ICPMS Yokogawa PMS2000 27 20190619150130-211536
Kr 28 pub XRF PANalytical PW2400 15 20190619143325-306295
Kr 28 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-194379
Kr 28 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153615-341631
Kr 28 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153625-315623
Kr 28_2007 pub TIMS Thermo-Fisher MAT261 1 20190621092556-986867
Kr 74 pub EPMA JEOL JCMA-733MKII/JXA-8900L (Tokyo) 3 20190614155144-289652
Kr 74 pub XRF Philips PW-1480 (Tokyo) 21 20190614154427-356064
Kr 74 pub TIMS Thermo-Fisher MAT261 1 20190619150147-790165
Kr 74 pub 2 20190619143340-591132
Kr 74 pub XRF PANalytical PW2400 15 20190619143326-812758
Kr 74 pub ICPMS Yokogawa PMS2000 27 20190619150132-098020
Kr 74 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153604-356756
Kr 74 pub TIMS Finnigan MAT261, MAT262 and Triton TI 1 20190619153616-801475
Kr 74 pub TIMS Finnigan MAT261, MAT262 and Triton TI 3 20190619153626-215572
Kr 74_2007 pub TIMS Thermo-Fisher MAT261 1 20190621092556-943474
Kr 28U-Th_1 pub TIMS Thermo-Fisher MAT261 5 20190621100738-721142
Kr 28U-Th_2 pub TIMS Thermo-Fisher MAT261 5 20190621100738-596477
Kr 74U-Th_1 pub TIMS Thermo-Fisher MAT261 5 20190621100739-704719
Kr 74U-Th_2 pub TIMS Thermo-Fisher MAT261 5 20190621100739-679596
Kr 72U-Th_1 pub TIMS Thermo-Fisher MAT261 5 20190621100739-089289
Kr 72U-Th_2 pub TIMS Thermo-Fisher MAT261 5 20190621100739-966465
Kr 47U-Th_1 pub TIMS Thermo-Fisher MAT261 5 20190621100739-442267
Kr 47U-Th_2 pub TIMS Thermo-Fisher MAT261 5 20190621100739-298479
Fm-15a_core pub EPMA JEOL JCMA-733MKII/JXA-8900L (Tokyo) 3 20190702110328-490811
Ta-26_core pub EPMA JEOL JCMA-733MKII/JXA-8900L (Tokyo) 3 20190702110520-830752
name spots global-id
caption ID assembly stone
Table 2. Whole-rock isotopic compositions of the representative samples pub 20190619151657-218351 Sr-Nd-Pb-B-isotopes (Kuritani et al., 2005) 11
Table 1. Representative whole-rock compositions of the Rishiri lavas and a sample of basement granodiorite pub 20190619135637-756769 major-trace (Kuritani et al., 2005) 11
manual
  • name
  • Kuritani, Takeshi
  • Kitagawa, Hiroshi
  • Nakamura, E.